By Charles G. Moore

Best mathematics books

Mathematik fue Physiker

Dieses Buch ist eine Darstellung des Mathematikstoffs f? r Physiker, die etwa einem vierst? ndigen Vorlesungsprogramm von vier Semestern entspricht. Das Buch umfa? t neben linearer Algebra, Funktionentheorie und klassischen Gebieten auch Distributionen, Anfangs- und Randwertprobleme f? r Differentialgleichungen und eine Einf?

The 2nd Scientific American book of mathematical puzzles & diversions

This pleasant assortment from the magician of math introduces readers to magic squares, the Generalized Ham Sandwich Theorem, origami, electronic roots, an replace of the Induction video game of Eleusis, Dudeney puzzles, the maze at Hampton courtroom palace, and lots of extra mathematical puzzles and rules.

Extra info for An Introduction to continued fractions

Example text

Rk (x) ≥ λ, k = 1, 2, · · · , m, N bmin ≤ j aij xi ≤ bmax , j j = 1, · · · , P. t. Rik xi , k = 1, 2, · · · , m Rk = xi = 1, i=1 xmin i ≤ xi ≤ xmax , i i = 1, · · · , n. t. λ wk Rk ≥ λ, k = 1, 2, · · · , m, n xi = 1, i=1 xmin i ≤ xi ≤ xmax , i i = 1, · · · , n. t. µRk (x) ≥ λ, x,λ n k = 1, · · · , m, xi = 1, i=1 xmin i ≤ xi ≤ xmax , i i = 1, · · · , n. 3 Conclusion In this chapter, we introduce Ramaswamy’s Model. Ramaswamy (1998) gave a numerical example in which the investor is only allowed to hold government bonds and plain vanilla options, and only two scenarios are assumed: “bullish” and “bearish”.

These new modiﬁcations could provoke other disagreements. (b) Because of the risk in this case, one think that a fuzzy multi-objective decision approach would be the most appropriate. The following results justify that the algorithm is well deﬁned. 1 If problem (AP) is feasible, then φmin ≥ 1/k, where k denotes the number of non-null components of vector (R, S). Proof. It suﬃces to construct a feasible solution for the dual of (AP) with objective value 1/k, because this provides us with a lower bound for the optimal value of (AP).

T. max min{0, t ⎩ ⎭ j=1 n+1 xi = 1, i=1 0 ≤ xi ≤ ui , n+1 j=1 i = 1, 2, · · · , n + 1, laj + lbj βj − αj + 2 6 xj ≥ E(ˆl0 ). where w0 is a given constant representing the tolerance level of risk, and E(ˆl0 ) is the required level of fuzzy turnover rate. (P3-1), (P3-2) and (P3-3), (P3-4) can be used interchangeably to generate the eﬃcient frontier of portfolios. In this sequel, we only discuss (P3-3) and (P3-4). To solve (P3-3) and (P3-4), we consider the following transformation. t. max t n (rit − ri )xi } , t = 1, 2, · · · , T min{0, ≤ w0 , i=1 n+1 ki |xi − x0i | ≤ xn+2 , i=1 n+1 xi = 1, i=1 0 ≤ xi ≤ ui , i = 1, 2, · · · , n + 1, n+1 βj − αj laj + lbj + )xj ≥ E(ˆl0 ).